4. Performing Statistics with R- I
4A) write an R program to apply built-in statistical function [hint: mean, median, standard deviation and others].
CODE:
# Sample data set data <- c(15, 20, 25, 30, 35, 40, 45, 50) # Calculate mean mean_value <- mean(data) cat("Mean:", mean_value, "\n") # Calculate median median_value <- median(data) cat("Median:", median_value, "\n") # Calculate standard deviation std_dev <- sd(data) cat("Standard Deviation:", std_dev, "\n")
OUTPUT :
Mean: 32.5 Median:32.5 Standard Deviation:12.24745
4B) Write an R program to demonstrate linear and multiple analysis.
CODE:
#To calculate the best fit line for height and weight of a person human.data=data.frame( height=c(5.1,5.5,5.8,6.1,6.4,6.7,6.4,6.1,5.10,5.7), weight=c(63,66,69,72,75,78,75,72,69,66)) human.data plot(human.data$height,human.data$weight) simple.regression=lm(weight~height,data=human.data) summary(simple.regression) abline(simple.regression,col="Red",lwd=2)
OUTPUT :
4B) W2 EXAMPLE
CODE:
#to predict the weight based on given height #height of person x=c(5.1,5.5,5.8,6.1,6.4,6.7,6.4,6.1,5.10,5.7) #weight of person y=c(63,66,69,72,75,78,75,72,69,66) #apply the linear model function relation=lm(y~x) summary(relation) #find the weight of the person wth height 7 ft a= data.frame(x=7) result=predict(relation,a) print(result)
OUTPUT :
1 79.16611