5. Performing Statistics R- II
5) Write an R program to implement time series analysis for the given data
CODE:
#Write an R program to perform time-series
#analysis for the given data.
#weekly data of Covid-19 Postive cases from
#22 January to 15 April
x=c(580,7813,28266,59287,75700,87820,95314,126214,
218843,471497,936851,1508725,2072113)
#Library required for decimal_data function
library(lubridate)
# output to be created as image
png(file="timeseries.png")
# creating time series object
# from date 22 January
mts=ts(x,start=decimal_date(ymd("2020-01-22")),
frequency = 365.25/7)
plot(mts,xlab="Weekly Data",ylab="Total postive cases",
main="Covid-19 pandemic",col.main="darkgreen")
#saving the file
dev.off()
OUTPUT :
5B) Write an R program to implement.
i) Normal Distribution. [Hint: dnorm(), pnorm(), qnorm(), rnorm()]
ii) Binomial Distribution. [Hint: dbinom(), pbinom(), qbinom(), rbinom()]
CODE:
# Normal Distribution
set.seed(123) # Set seed for reproducibility
# Parameters for the normal distribution
mean_value <- 0
sd_value <- 1
# Generate random samples from a normal distribution
random_samples <- rnorm(1000, mean = mean_value, sd = sd_value)
# Calculate probability density function (PDF) at specific points
pdf_values <- dnorm(random_samples, mean = mean_value, sd = sd_value)
# Calculate cumulative distribution function (CDF) at specific points
cdf_values <- pnorm(random_samples, mean = mean_value, sd = sd_value)
# Quantile function (inverse CDF) - Find the value corresponding to a given probability
quantile_value <- qnorm(0.95, mean = mean_value, sd = sd_value)
cat("Normal Distribution:\n")
cat("Quantile (Inverse CDF) at probability 0.95:", quantile_value, "\n\n")
# Binomial Distribution
# Parameters for the binomial distribution
n_trials <- 10
prob_success <- 0.5
# Generate random samples from a binomial distribution
binom_samples <- rbinom(1000, size = n_trials, prob = prob_success)
# Calculate probability mass function (PMF) at specific points
pmf_values <- dbinom(binom_samples, size = n_trials, prob = prob_success)
# Calculate cumulative distribution function (CDF) at specific points
cdf_binom_values <- pbinom(binom_samples, size = n_trials, prob = prob_success)
# Quantile function (inverse CDF) - Find the value corresponding to a given probability
quantile_binom_value <- qbinom(0.95, size = n_trials, prob = prob_success)
cat("Binomial Distribution:\n")
cat("Quantile (Inverse CDF) at probability 0.95:", quantile_binom_value, "\n")
OUTPUT :
Normal Distribution:
Quantile (Inverse CDF) at probability 0.95: 1.644854
Binomial Distribution:
Quantile (Inverse CDF) at probability 0.95: 8

.jpeg)
